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ABSTRACT

¥ Suppose samples of size n are chosen at random from
lots of size N and examined for the presence (or absence)

i of a certain type (or types) of defect. If inspection is

L

not perfect, there may be a probability, p, of failing to
detect a defect when it is, in fact, present. It is de-
sired to estimate p from records of the number of items

S found to have the defect(s) on inspection.

4 In the absence of furiher information, the problem

A cannot be answered on the basis of single samples, of size

n, from each of a numter of lots. Some further assump-

tions are needed - such as supposing the number of de-~
;i fective items per lot is (nearly) constant. Alternatively,
N * some more elaborate sampling - for exampie, repeated sam-
pling from the same lot - may provide the necessary in-

formation.

The paper describes several methods of estimation
utilizing various forms of additional data and informa-

A tion. Some as yet unsolved problems are briefly dis-

cussed, Accession For
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I. Introduction

Suppose samples of size n are chosen at random from lots of size N and
examined for the presence (or absence) of a certain type (or types) of defect.

If inspection 1s not perfect, there may be a probability (1-p) of failing to de-
tect a defect when it is, in fact, present. It is desired to estimate p from .
records of the number of items found to have the defect(S) on inspection. (We
assume that the probability of ‘false positive' - declaring a good item to be
defective - is negligible.)

If sampling is with replacement, it is not possible to estimate p on the
basis of single samples, of size n, from each of a number of lots, even supposing
the actual proportion of defective items (6) to be constant from lot to lot.

This is because the distribution of the observed number of defectives (Z) in such
a sample 1s binomial with parameters (n, 6p) and it {s not possible to d1sen;
tangle p from 6. A

1t snplil_ug 1s without replacement, again supposing the proportion of de-
fectives (¥~ D/N when D 15 the number of defectives in the lot) the distribution
of Z 1s a mixture of binomial distributions with parameters (Y,p) -where .Y - the
sctual number of defective items in the sample "has a'hyp:f'geometric distribution
with parameters (n,D,N). Conventionally we write (as in [1]).

7~ Bin(Y,p) JY\ Hypg (n,D,N)
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From a set of values of m independent random variables (Zl. ZZ"'°zm)’ knowing
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nand N, it is possible to estimate p by maximum 1ikelihood from the 1ikelihood

function
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The 1imits of summation for y are max(ZJ,n-N+D) <y < min(n,D). However, it is to
be expected - in view of the fact that as N increases we approwed the situation of
sampling without replacement - that no great accuracy i< estimating p will be
attainable. A major part of difficulty in the nuisq@e parameters D(or 6=D/N). For
reasonable accuracy some form of repeated sampling will be needed.

2. Estimates of p
If we are in the fortunate position of having a number of items known to be

;“»‘?’:. '

defective we can obtain a simple estimator (of p) by testing them repeatedly and
estimating p by the proportion of times a 'defective' decision is obtained. If
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this is not the case at the beginning of the investigation we might, however,

be in a position to exploit the fact that an item declared 'defective' at any

time must (according to our assumptions) be defective. Cenoting by Nj the number
of items declared defective just j times in m trials (so that Ng #+ Ny +...+ N =n,

and if p = 1, Ny = n-y, Nﬁ = y) a plausible but specious argument might run as

follows:

“For each item, we discard the first ‘defective’ decision and observe
the proportion of defective decision in the remaining 2 N, sets of
(»1) trials. Since these are independent, the total nunber of
defectives in the trials has a binomial ((m-1) Jgluj.p) distribution,

and our estimate of p is unbiased, with an easily cowwtcd standard
’ deviation. (If "0 s m, then no estimation is possible).”
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(It is not difficult to see that this will produce a negatively biased estimator
of p, because in all the trials which are thrown away a decision of 'defective’

is reached. In fact the estimator is

m .
: L :
1 m 1 2 J 9
) N, PR I = ‘Lﬂ‘ (®)
" J=1 ] J=1 . d
and its expected value is

1 m .. (10)

{ﬁ:r 1-(i;p)m 1} )

We could take notice of only those trials following the first ‘defective’
decision; although this will not use all the information available, it does lead
to simple formulae. The observed proportion of 'defective’ decisions is m;? an
unbiased estimator of p; the (conditional) distribution of the number of ‘defective’
decisions counted is binomial with parameters (total number of inspections included
in count, p).

Suppose, now, that we have m repeated inspections of a set of n items (among
which an unknown number y are defective) and have been able to record the results
of individual inspections (and not just total number of decisions of ‘defective’

for each inspection of the set of n items). The l1ikelihood function is

y m ¢ N
[y-n+N°.N1....,N (1-p)"y-mig) {(?)93(1-p)”'3} J

=1

y m . :‘"‘J n ‘ (11)
- [y.MO'Nl'...’NM] {JEI (:‘«;)} pl (1_p)W'§JNJ

(n-Ng<y<n)
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i m
N where Ny = n - J{ NJ is the number of items which are not declared defective in
=]
m
o any of the m inspections. Note that (Nj. JZIJNJ) is a sufficient statistic for
;*f ’ (y.p); ZJN‘1 is the total number of 'defective' decisions. If y=- were known, the
maximum 1ikelihood estimator of p would be
% A 1 " -1 .
P(y) = (my) JZJNJ = (my) T, say (12)
- u
&: The corresponding maximized 1og 1ikelihood would be
Tog L(y) =K + 120 log (y-1) + (my~T) log(my-T)-my log my (13)

where K does not depend on y. We then seek to maximize (13) with respect to y,
subject ton>y>n - "0‘ Note that we are not primarily interested in the value
of y itself, but we need t‘he value, y, maximizing (13) to calculate the maximum
1ikelihood estimator, 3(9), of p.

A useful practical method is obtained by noting that for the ngNj {tems which

we know to be defective, the numbers of times each item is declared 'defective' can

be regarded as observed values of independent random variables each having a binomial

(m,p) distribution, truncated by omission of zero values. Each such variable has

expected value np{l-(l-p)"'}'l. Equating sample means and expected values gives the
equation

w1 (131" = (neNg) T

= Average number of times an article is judged defective,
given that it is so judged at least once.

This estimator is, in fact, the conditional maximum 1ikelihood estimator of p, gfven
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The equation can be solved iteratively, writing it in the form
B = L (n-Ng) " 01- (1-p)™ (14)

We note that
var(T) = mnp(l-p)e - m n(n-l)(N-l)'lp2 8(1-8)

and
3 var(p) & m 2 (n-Ng)"201-(1-B)™Z var(1)
If an estimator of y is needed, we note that, with

ﬁigi m m
p =B E[ ] N;=n - Nyly,p] = y{1-(1-p)"}.

'-,_’igé.‘. ng j

y . Replacing expected by actual values, we get the estimator

S

o ¥ = min(n, l:(n-uo){i-(l-p)"'}'1 ]) = min(n, [(mp)' T] ) (15)
o where [ ] denotes 'nearest integer to'.
;é;ﬁ As a numerical example suppose we test each of 50 (=n) items three (=m) times
R4
s and obtain

"0 = 43; N, = 1; N, = 1; N; = 5
N so that

3
Ts= 3211"1 =14+2+15=18. Equation (14) gives

33 - 32+ 1 s 3x 1) lig =67

where p-3p+ %} .0
leading to B = 0.8545

From (15), § = min [so.[ _18 ”- 7.
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Note that the same values of P and ¥ would be obtained, whatever the value

of n (>7).
Maximum 1ikelihood estimation has been discussed by Lindsey [2].
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